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ON THE ACCURACY 01 A NUMERICAL INIEtiKANIUN PROCEDURE
FOR COMPUTING DIFFRACTION FIELDS USING TABLE-LOOK-UP

INTRODUCTION

In a classical electromagnetic problem, it is often required to compute the radiation field either
radiated directly from a known current source or scattered from a secondary source. In the latter case,
the incident field on the scatterer is known or can be determined with the known boundary conditions.
The vector potential function of such an electromagnetic field is evaluated by integrating the current
source or current distribution on the surface of the scatterer. Then the radiation field in space can be
determined from this vector potential function. In general this leads to the evaluation of the integral
[1, 21

E (, F) =f L T(4, q)exp[jG((, 4?, A )1d dI , (1)

where J is the current density excited by the source of the scatterer surface, and e,'q are the coordi-
nates of the current source; 'F and 0 are the coordinates of a field point. It can be shown that the
above vector integration can be converted into a scalar integration function such that

F(O9 'F) = kff(S. rdexpiG(4, m, (D. O)ldtdn. (2)

In general, the current distribution and the geometry of the source or scatterers are very complicated.
Except for a very few simple caes, it is impossible to integrate the above equation into a closed form.
This integration is usually performed numerically on a digital computer. Although it is straightforward
to program such an integration, the required computation time may sometimes be extremely lengthy.
As an example, if we assume a geometry for which the current source is not too complicated, a modest
100 mesh points for each of the 4 and - dimensions may be required. Then it requires 104 points of
summation for this integration for each field point at a given 0 and 4F. Now suppose that a 100 by 100
mesh points are needed to map the entire radiation space. Although the F(g, o) current function does
not need to be repeated, the complex phase function tine Green's function) is nevertheless a function
of both source coordinate and field coordinate. Thus, computation of 108 points is required in this
example. At each point a computation of sine and cosine functions is required. In general, computa-
tion of this sine and cosine is a time-consuming process for a digital computer. Most fast machines can
probably compute these sine and cosine functions and its argument within perhaps 100 gs. To compute
one set of output data for this example, a central processor time of 2.8 h is required just for the sines
and cosines. Such an exercise is certainly not cheap.

There are many ways to combat this problem. For example, Eq. (2) is a generalized Fourier
transformation Thereforep the fast Fourier transformation (FFT) may be applied. Unfortunately, the
exponential function G(O, (D, m4) in general has no linear relation between source coordinates and
field point coordinates. In general, a prerequisite of the FFT is that the phase function G computed for
any field point (0, (A) must be contained in a set that is finite and the whole set is generated at a certain
0, 'F point. This requirement sometimes puts a contraint on the choice of the integration mesh points
that cannot be achieved.

There are other ways. One example is found in the computation of reflector antenna patterns. In
this case Galindo-Israel and Mittra [31 proposed to expand the integral with an infinite series as a func-
tion of the field point coordinates. The coefficients of such a series are the Fourier transformation of
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the 7A, e coordinates, To compute such coefficients, similar integration of the phase function is
required. Furthermore, this series expansion method applies only to this special case.

The third way, perhaps the simplest approach, is table-look-un. In this annrnach_ at the hevinninu
of the computer program, sine and cosine functions with a 2wr period are computed and stored, using
an adequate number of sampling points. In later computations, the required sine and cosine functions
are found from the table, thus avoiding the repeated computation of such functions. However, unless
the arguments of these sine and cosine functions coincide with the sampling points in the table, errors
will be introduced. The amount of error is a function of the number of sampling points in this sine an
cosine table. Therefore, one must decide how much error ohe can tolerate and then one can determine
how big a table one must have. In this report we analyze this problem and present the results.

TABLE-LOOK-UP ERROR

For a numerical integration, Eq. (2) can be transformed into the form

F(9, 'F) - LA exp(jG0 ), (3)

where A, fl, - C) 0

GQ = - G( C 0. a)F.

For simplification, the double summation of q and f in Eq. (2) is converted into a single summa-
tion index. The function F09, ') is a complex function having both real and imaginary components,
thus

F{O, <D) - x + iy.
When table-look-up is used to determine the phase of the exponential term, errors are introduced, and
Eq. (2) becomes

F0, 'F) = S A, exp(j00)exp(j0 ,), (4)

where the 8, are independent random variables. Therefore, A, expG,)exp(j 0 ,) are also independent
random variables, and the function F(9, 'F) is the sum of many independent random variables.
According to the central limit theorem [41, the probability density function of Fo, ':) is asymptotically
normal. LSince a normal distributon is com-pletely deterMined by the first and second moments out
next task is to find the mean and the variance of the random complex function F(0, #).

It can be shown that the mean of F(6, 4) is

V17{3 J I 1 al V' A .f1 c
T ku1P I tP\ IT 'inn CAVVUuN 

where 4(I) is the characteristic function of the random variable An, which is defined-

0 (k) = j p (8)expjk)dB, (6)

and p(S) is the probability density function of the random variable 8. If the entries of the sine and
cosine table are sampled uniformly within a 2 ir range having a total number of sample points K, then

p = I/a na < a< (n + I)a (7)

= 0 otherwise,

and a = 2n/K,
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There are two ways to use this table. The first is to choose the sine and cosine function of the

next index if the argument of the phase angle is larger than the angle na. The second method is to
I .. .1 I-- !_ I--- "--- t- I I I_ rn- I_ f n- rrnar -Aco t

choose the function of the angle na if the argument is less than (if ± 2 At=. For the former case Uhe

characteristic function is

1 i sin I kal

/k) = exp(-1J kaj k '' (8)

221k

while for the latter case it is

sin-lka
~(k) = 2 (9)

2 ka
2

One may see that the difference between Eqs. (8) and (9) involves a constant phase (t/2) ka
which in general is not important because the reference phase of the function F(ot) is arbitrary.
However, in the actual programming, the first method is somewhat easier. One has

sin--ka 1 k k' (10)

2 Ik

Since a is usually very small, the high-order terms are ignored. By use of this result, Eq. (5) becomes

F(O, C) = ( - 0.042a2 ) I A, exp (G,). (11)
n

In the appendix it is shown that the variances of the real and imaginary components of F(0, 4) are
respectively:

O2 {2 -(-(A + 2 [0(2)-01]A2cos(2G,,),

and

2 =1 (l (1)) A 2(_ 1 [[(2) flAT A] 02Y 2 n" A 2 - _ cos(2G9,)

while the covariance of x and y is

= -(2)&-(0l)iL A] sin(2G,).

The joint probability density function of the real and imaginary components x and y is then:

Ie I I (x-x') 2
-2rlxx)(Y-y) - (22)

2rcra v2 (I - rTr 2 -21r a2 jj'
where x and 57 are respectively the real and imaginary components of F(O, 4), and

CY= rarXo- * (13)

Our goal is to find the required number of samples, or how big a sine and cosine table is required to
.achieve a certain prescribed accuracy for both real and imaginary components, x and y. The probability
density function of Eq. (12) is too complicated to estimate this relation. However, certain approxima-
tions can be made.
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Since L A]r2 sin2G and L A],2 cos2GQ are in general much smaller than LA] for a first order estima-

tion, one may assume that

0-2 = (T2 =C 2z = -]I -1 _ 2(l))T A2,(ff2 a~a21(12(1)LA,2 014)
and

cz z
The probability density then becomes

x Y) = --I exp |-X 2 )lf- 2 + (Y - )2]1
27ira2 exp 

This equation implies that the real and imaginary components of F(9, 4F) are two independent
variables and have the same variance. Hence, from Eq. (I l)

x - 0.042a2)Re A , expW9), (16)

and y = tl-0.042a 2)Im L A, exp(G,), .17)

If the table has enough sampling points and a is small, then the 0.042a2 term can be ignored.
Both i and y7 are then equal to the actual value. The probability density function for either x or y can
be written separately as

P(.x = ,exP |- ;- (iS)

when a is small, the variance can be approximated by

rr2= A 2

Let us assume that A, is normalized such that

LA,= 1. (19)

This normalization implies that

IF(o, O)j < 1.

According to Cauchy's inequality,

|X"Y]' 2 j 1.

Let yn = 1, then
I N 2 N
lXf(< NX ]. (21)

Therefore,

ar> 171 j (22)
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Since Ix - x I < 3a with a probability higher than 99%, if one desires that x or y values should not
deviate from the actual value by an amount e with a probability of at least 99%, then the number of
sampling points of the sine and cosine table should be

K > 3.8 5 (23)

where Nis the number of terms summed in Eq. (3). For the example given in the introduction, where
N= 100 x 100, if one desires that the error e ( 10-6, then we find K > 38 500. Rather than com-
pute the sine and cosine terms 108 times, a table of the size 40 000 will be adequate to yield results
accurate to -120 dB relative to the absolute sum of the integrated terms.

NUMERICAL EXAMPLE

A numerical example is presented here. In this example, the antenna pattern of a uniformly
excited line source is plotted. Strictly speaking, this is not quite the same as that predicted by Eq. (23)
because in the previous analysis, in the interest of general scattering problems, the scattered field is
presented as a complex number with real and imaginary components separated. In an antenna pattern,
the amplitude plotted is the square root of the sum of the squares of the real and imaginary com-
ponents. Probability density of such amplitude is known as Rician distribution. However, the illumina-
tion function of a line source is symmetrical and the pattern function contains only the real component.
Therefore, the results of Eq. (23) can apply to this case. A 30-wavelength line source pattern is plot-
ted. Since this pattern function is a sinx/x function, this exact pattern function is used in both Fig. 1
and Fig. 2 as reference. Next, this same pattern is computed by numerical integration. A total of 100
points is used in the integration. Figure 1 shows the pattern plotted with a table of 32 entries. Accord-
ing to Eq. (23), the error should be in the order of 0.012. In Fig. 1 the maximum error occurred at an
angle of about 800. The correct pattern has a -36-dB sidelobe level while the approximate pattern has
a peak of -31 dB at the same angle point. At -36 dB the radiation amplitude is 0.0158 while at -31
dB it is 0.0282. The deviation of the amplitude is about 0.0124 which is very close to what Eq. (23)
predicts. Figure 2 shows the same antenna pattern, except that the number of table entries increases to
128. The maximum error in this figure is about 0.0038 while Eq. (23) predicts 0.003.

CONCLUSION

In this report we have analyzed the error introduced by table-look-up for the numerical integra-
tioti Ul atl ecLLeUtoagndticLI UIIIUCL1oIL integral, ve nave snown that in order to Keep the error of both
real and imaginary components to be less than e, the required table should have at least K entries uni-
formly distributed within a 2 ir range, and K Ž 3.85/eLv where N is the number of terms used for
numerical integration.
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Fig. 1- Comparison of antenna pattcrns with an exact sol1ution and the one that uses a
table of 32 entriesa'
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Fig. 2 - Comparison of antenna patterns with an exact solution and the one that uses a
table of 328 entries
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Appendix

COMPUTATION OF VARIANCE

Let F(o, CD) = x + jy (Al)

E{)F - t12} = cr + .(A2)

E{(F - F)2} = cr2- cr + 2JuY (A3)

E{IF- t12} = E{1F 12) -iE(F)2 (A4)

E{1F12} = XA]2 + XnAn, expt/(Gn- Gm)] '1(l)1 2 (AS)
npfm

I(F)12= - I(I 1 2XV A 9xpr;(C - c Irt'A Afl
n7 m

t>2 + UY2I = 1-1,(1) ~2) JA 2 (7
n

E(F - F)2} = E{(F)2} - (E(F)}2 (AS)
E(F) 2-= A 20 (2)expU2Gj] (A9)

n

+ , AnAm expUj(G, + G0,,)Ir
2(l) (A1O)

nem

{E(F)}2 = 42(l) y AA,,1 expI(Gn + Gm)] (All)

cr 2 c cr 2 = (O (2) - q, 2 (1)) A COS(2Gn) (A 12)
n

2 ry = (0(2) - k2 (l)) A, sin(2Gn) (A13)
n
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